办公平台 | 所内邮箱 | ARP | English
当前位置: 首页 > 科研成果 > 学术活动 > 学术报告
[理论室报告] Fermionic quantum criticality in fermion-bag inspired Hamiltonianlattice field theories
时间: 2020年01月17日 10:30
地点: M830
报告人: Emilie Huffman

Perimeter Institute

Abstract: Motivated by the fermion bag approach--a quantum Monte Carlo approach that takes advantage of grouped local degrees of freedom--we construct a new class of Hamiltonian lattice field theories that can help us study fermionic quantum critical points. We construct the partition function of a lattice Hamiltonian in $2+1$ dimensions in discrete time, with a temporal lattice spacing $\varepsilon$. When $\varepsilon \rightarrow 0$, we obtain the partition function of the original lattice Hamiltonian. But when $\varepsilon = 1$, we obtain a new type of space-time lattice field theory which treats space and time differently, but still lacks fermion doubling in the time dimension, in contrast to Lagrangian lattice field theories. Here we show that both continuous-time and discrete-time lattice field theories derived from the $t$-$V$ model have a fermionic quantum critical point with critical exponents that match within errors. The fermion bag algorithms run relatively faster on the discrete-time model and allow us to compute quantities even on $100^3$ lattices near the quantum critical point. We then discuss how this class of fermion-bag amenable Hamiltonian lattice field theories also include simple $Z_2$ gauge theories coupled to fermions, and explore one such theory in $1+1$ dimensions with a coupling $h$. We demonstrate how even in such a simple theory nontrivial behavior arises, from the emergence of the Gauss law at low temperature to a nontrivial mass scaling.

联系人:孟子杨(82649331)


天地无限平台网站 澳门老葡京 名人游戏洗码佣金 申博登入游戏网址 申博太阳城手机登陆
太阳城平台入口 澳门凯时指定代理 足球现金网 云鼎十佳官网 申博管理站注册
奥门赌场 皇冠网址gb9898 9亿女优DS太阳城 百佬汇国际网 菲律宾申慱网站多少
大东方娱乐电子游戏 博发游戏手机版 申博太阳之城娱乐城 沙龙娱乐现金网 澳门TT最佳选择